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We consider the running time of the generalized quantum search Hamiltonian. We
provide the surprising result that the maximum speedup of quantum search in the gener-
alized Hamiltonian is anO(1) running time regardless of the number of total states. This
seems to violate the proof of Zalka that the quadratic speedup is optimal in quantum
search. However the argument of Giovannettiet al.that a quantum speedup comes from
the interaction between subsystems (or, equivalently entanglement) (and is concerned
with the Margolus and Levitin theorem) supports our result.
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Quantum computation is an epoch-making idea to change concept of compu-
tation. Since David Deutsch showed that characteristics of quantum physics such
as superposition and entanglement can be used to process information more effi-
ciently than any classical device (Deutsch, 1985), there have been much progress
in quantum computation. One of them is Grover’s quantum search algorithm which
takesO(

√
N) trials while a known classical search algorithm needsO(N) (Grover,

1997). Grover offered the quantum search algorithm with quantum gates. On the
other hand, Farhi and Gutmann provided the following Hamiltonian performing
quantum search (Farhi and Gutmann, 1998).

H = E(|w〉〈w| + |ψ〉〈ψ |)
The Hamiltonian may correspond to Grover algorithm (Grover, 2002). Re-

cently, the generalized quantum search Hamiltonian was proposed (Bae and Kwon,
2002).

H = E(|w〉〈w| + |ψ〉〈ψ |)+ ε(eiφ|w〉〈ψ | + e−iφ|ψ〉〈w|) (1)
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where,E andε are positive constants in unit of energy with the conditionE ≥ ε
andφ is a constant phase (Bae and Kwon, Preprint). We denote the initial state
as |ψ〉 = x|w〉 + √1− x2|r 〉, where|w〉 is the target state,|r 〉 the orthogonal
complement, andx = 〈w|ψ〉(≈1/

√
N). Let us consider the running time of the

generalized quantum search Hamiltonian. Then we can find the surprising speedups
involving theO(1) time. One may think that theO(1) speedup violates the proof
of Zalka that the quadratic speedup is optimal in quantum search. However, the
Margolus and Levitin theorem and the recent argument of Giovannettiet al.(2003;
Margolus and Levitin, 1998) help us to understand the consistency of the maximum
speedup. The running time of the algorithm based on the generalized quatnum
search Hamiltonian is

T = π

2

1

[(Ex+ ε cosφ)2+ (1− x2)ε2 sin2 φ]1/2
(2)

The running timeT may beO(
√

N) for arbitraryE, ε andφ with E > ε. We
name the Hamiltonian having the above quadratic speedup as the type1 quantum
search Hamiltonian.

Type1. The quadratic speedup quantum search Hamiltonian

H1 = E(|w〉〈w| + |ψ〉〈ψ |)+ ε(eiφ|w〉〈ψ | + e−iφ|ψ〉〈w|) with E > ε

Next we consider the case ofE = ε. In this case, the running time is

T = π

2

1

E(x cosφ + 1)

= π

2E
(1+ O(x cosφ)) (3)

Choosingφ = ±π
2 , we surprisingly have theO(1) time as follows

T = π

2E
= O(1)

In this case, the running time has nothing to do with the total number of states
N. This is the case of the maximum speedupO(1). We also name the Hamiltonian
having theO(1) speedup as the type 2 quantum search Hamiltonian.

Type2. TheO(1) time quantum search Hamiltonian

H2 = E[|w〉〈w| + |ψ〉〈ψ | ± i |w〉〈ψ | ∓ i |ψ〉〈w|]
In addition, there are another two kinds of quantum search Hamiltonian,

whose running time is reducing as the number of states becomes larger. We name
the Hamiltonian as type 3 quantum search Hamiltonian as follows:

Type3–1. The first exponential speedup Hamiltonian
H31 = E(|w〉〈w| + |ψ〉〈ψ |)+ ε(eiφ|w〉〈ψ | + e−iφ|ψ〉〈w|) where φ = cos−1
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(−Ex/ε), with the conditionE > ε > Ex, whose running time is

T = π

2

1

[(1− x2)(ε2− (Ex)2)]1/2

= O

(
1

[(ε2− (Ex)2)]1/2

)
(4)

Type3–2. The second exponential speedup Hamiltonian
H32 = E(|w〉〈w| + |ψ〉〈ψ | + eiφ|w〉〈ψ | + e−iφ|ψ〉〈w|), whose running time is

T = π

2

1

E(x cosφ + 1)

= π

2E
(1+ O(x cosφ)) (5)

Type4. The exponential and quadratic speedup Hamiltonian
H4 = E(|w〉〈w| + |ψ〉〈ψ |)± ε(i |w〉〈ψ | − i |ψ〉〈w|), whose running time is

T = π

2

1√
(E2− ε2)x2+ ε2

= O

(
max

(
1

ε
,

1√
E2− ε2x

))
(6)

The running timeT is O(1) if Ex > ε
√

1+ x2, butT = O(
√

N) otherwise.
The generalized quantum search Hamiltonian may find the target state, with

various speedups, involving theO(1) time and the exponential. The quantum search
Hamiltonians can be classified to four types corresponding to their speedups. For
instance, the Farhi and Gutmann’s quantum search Hamiltonian is included in
type 1. At the measurement time (or in the read-out time), the probability for
Hamiltonians of type 1, type 2, and type 3 to obtain the target state may be
1− O(x2) ≈ 1− O(1/N), although their running times are different. The con-
dition φ = nπ is necessary for the probability one (Bae and Kwon, Preprint).
Thus the perfect searching holds only for the Hamiltonians of type 1 and type 3.
The O(1) time in quantum search is indeed something exotic if one remember
the Zalka’s proof that the quadratic speedup of the Grover algorithm is optimal
(Zalka, 1999). Let us then consider the Margolus and Levitin theorem to resolve
the maximum speedup (Margolus and Levitin, 1998). The theorem claims that, for
a Hamiltonian whose lowest energy level is zero, it takes at least a timeT⊥ ≥ π/2E
for a given state|ψ〉 to evolve an orthogonal state, whereE is the mean energy,
E = 〈ψ |H |ψ〉. Giovannettiet al. stated the following theorem concerning the
Margolus and Levitin theorem (Giovannettiet al., 2002).

Proposition 1 (Maximum Speedup). Suppose that, for a Hamiltonian H, a state
of the Hamiltonian|η〉 is given. Then the minimum time for the state to evolve to
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an orthogonal state is

T⊥ ≥ T(E,1E) := max
( π

2E
,
π

21E

)
where E= 〈η|H |η〉 (mean energy) and1E =

√
〈η|(H − E)2|η〉 (standard

deviation)

Applying the maximum speedup theorem to the generalized quantum search
Hamiltonian, we obtain the minimum evolution time. The lowest energy level of
the Hamiltonian is nonzero, so the timeT⊥ is

T⊥ ≥ T(E,1E)

= π

2

1

[(Ex+ ε cosφ)2+ (1− x2)ε2 sin2 φ]1/2
(7)

This minimum evolution time coincides with the running time of the algorithm
based on the Hamiltonian. Thus, we have shown that the running time of the
quantum search Hamiltonian is minimum. The works to minimize the lower bound
of the evolution timeT⊥ are expected to be the same to the various speedups, the
O(1) time and the exponential. This implies that, although theO(1) running time is
somewhat surprising in view that Grover algorithm is optimal, but, by the theorem,
it is expected in a continuous time algorithm based on Hamiltonian evolution. Let
us revisit the Farhi and Gutmann Hamiltonian to consider the interaction between
the target state and the initial one. The Farhi and Gutmann Hamiltonian can be
written as

H = Hw + Hr + Hint (8)

where Hw = E(1+ x2)|w〉〈w| and Hr = E(1− x2)|r 〉〈r | are the free
Hamiltonians and

Hint = Ex
√

1− x2(|w〉〈r | + |r 〉〈w|) (9)

is the interaction Hamiltonian. The mean energy of this system isE and the standard
deviation of it1E = Ex. Thus the minimum evolution time isT⊥ = π/2Ex, which
coincides with the running time of Farhi and Gutmann Hamiltonian. This implies
the running time of the Farhi and Gutmann Hamiltonian is the minimum. In the
sense that|w〉 and|r 〉 can be considered mutually negated states, the Hamiltonian
can be explained by the entanglement dynamics argument of Giovannettiet al.
This provides the point of view that quantum search is the process to evolve the
initial state to the target state with the interaction between the two states. We
then generalize the interaction between the two states, by letting the following
Hamiltonian perform quantum search

H = Hw + Hr + Hint (10)
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Hw = E1|w〉〈w|
Hr = E2|r 〉〈r |

Hint = E3(eiϕ|w〉〈r | + e−iϕ|r 〉〈w|) (11)

whereHw andHr are the free Hamiltonians andHint is the interaction Hamiltonian.
We will exert to determine the unknownsE1, E2, andE3 and the phaseϕ, in order
that the Hamiltonian describes the general interaction between the initial state and
the target state. An ideal quantum search algorithm should be written with the initial
state|ψ〉(=x|w〉 + √1− x2|r 〉) and the target state|w〉. Then the Hamiltonian is
rewritten as,

H =
(

E1+ E2x2

1− x2
− 2E3x cosφ√

1− x2

)
|w〉〈w| + E2

1− x2
|ψ〉〈ψ | + 1√

1− x2

×
(

E3 eiϕ − E2x√
1− x2

)
|w〉〈ψ | + 1√

1− x2

(
E3 e−iϕ − E2x√

1− x2

)
|ψ〉〈w|

(12)

We require that this Hamiltonian should perform quantum search, then the
Hamiltonian behaves expectedly,

H = E(|w〉〈w| + |ψ〉〈ψ |)+ ε(eiφ|w〉〈ψ | + e−iφ|ψ〉〈w|) (13)

where E1 = E(1+ x2)+ 2εx cosφ, E2 = E(1− x2) and E3 e±iϕ = √1− x2

(Ex+ ε e±iφ). Thus we have shown that the quantum search Hamiltonian describ-
ing the generalized interaction between the initial state and the target state is the
generalized quantum search Hamiltonian.

We now wish to discuss the source of the maximum speedup. First, we
compare oracular Hamiltonians in the Farhi and Gutmann Hamiltonian and the
generalized quantum search Hamiltonian. In the former Hamiltonian, the oracular
Hamiltonian isHw = E|w〉〈w|and in the latter one, it isHw = (E + 2εx cosφ)|w〉
〈w|. That is, the difference between magnitudes of two oracular Hamiltonians is
little by the amount of 2εx cosφ. Moreover, for theO(1) time quantum search
Hamiltonian, oracular Hamiltonians are the same. This implies that the oracle
cannot be the source of theO(1) time speedup.

Therefore, we notice that the factors, such as the global interaction (or equiv-
alently the mutual entanglement) between the target state and the initial state
and the quantum coherence due to the phase alignmentφ = nπ , are the sources
of the maximum speedup. In the generalized quantum search Hamiltonian, the
target state has much more interaction with the initial state compared to the
interaction of the Farhi and Gutmann Hamiltonian. Evidently, the interaction
E3 e±iϕ = √1− x2(Ex+ ε e±iφ) is much larger than the interactionEx

√
1− x2.

The difference between two interactions is aboutε. Then, as we have shown,
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the exponential speedup appears only with the condition of maximal interaction
ε = E. Also the other source of the maximum speedup is the quantum coherence
due to the phase alignmentφ = π/2 if ε is suitably large. The type 4 Hamiltonian
shows the power of the phase alignment. TheO(1) time speedup appears only
when the conditions such as maximal interaction and phase alignment are satis-
fied. This implies that entanglement and quantum coherence are the sources of the
speedup in a continuous time quantm search algorithm.
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